Volver a Guía
Ir al curso
CURSO RELACIONADO
Análisis Matemático 66
2024
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
1.
Calcule los siguientes límites
j) $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}-6 x-40}-x\right)$
j) $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}-6 x-40}-x\right)$
Respuesta
Ahora tenemos que resolver este límite:
$ \lim _{x \rightarrow +\infty} \left(\sqrt{x^2 - 6x - 40} - x\right) $
Nuevamente tenemos una indeterminación de tipo "infinito menos infinito". Para salvar esta indeterminación, vamos a usar la misma estrategia que con el ítem anterior, multiplicando y dividiendo por el conjugado.
$ \lim _{x \rightarrow +\infty} \left(\sqrt{x^2 - 6x - 40} - x\right) \cdot \frac{(\sqrt{x^2 - 6x - 40} + x)}{(\sqrt{x^2 - 6x - 40} + x)} $
$ \lim _{x \rightarrow +\infty} \frac{(\sqrt{x^2 - 6x - 40} - x)(\sqrt{x^2 - 6x - 40} + x)}{\sqrt{x^2 - 6x - 40} + x} $
El numerador tenemos algo multiplicado por su conjugado, perfecto, lo podemos reescribir como una diferencia de cuadrados y ahí vuela la raíz...
$ \lim _{x \rightarrow +\infty} \frac{(x^2 - 6x - 40) - x^2}{\sqrt{x^2 - 6x - 40} + x}$
$ \lim _{x \rightarrow +\infty} \frac{-6x - 40}{\sqrt{x^2 - 6x - 40} + x} $
Ojo, atentí acá... A diferencia del problema anterior, fijate que todavía no podemos terminar el ejercicio, porque ahora tenemos una indeterminación de tipo "infinito sobre infinito". Bueno, no hay problema, hacemos lo que sabemos hacer en esos casos: Sacar factor común el que manda, claro que sí. Y como vimos en la clase, siempre, siempre, en estos casos arrancá primero trabajando con la expresión adentro de la raíz! Sacamos factor común $x^2$ adentro de la raíz:
$ \lim _{x \rightarrow +\infty} \frac{-6x - 40}{\sqrt{x^2(1 - \frac{6}{x} - \frac{40}{x^2})} + x} $
Distribuimos la raíz cuadrada, ojo que ahí nos queda \(|x|\) cuando cancelamos potencia y raíz!
$ \lim _{x \rightarrow +\infty} \frac{-6x - 40}{{|x|}\sqrt{1 - \frac{6}{x} - \frac{40}{x^2}} + x} $
Y recontra más ojo acá: Como \( x \) tiende a \( +\infty \) (o sea, es un $x$ positivo!) \( |x| = x \)
$ \lim _{x \rightarrow +\infty} \frac{-6x - 40}{{x}\sqrt{1 - \frac{6}{x} - \frac{40}{x^2}} + x} $
Ahora sacamos factor común "el que manda" arriba y abajo, fijate que en ambos casos es $x$.
$ \lim _{x \rightarrow +\infty} \frac{x(-6 - \frac{40}{x})}{x(\sqrt{1 - \frac{6}{x} - \frac{40}{x^2}} + 1)} $
Cancelamos las $x$. Nos queda:
$ \lim _{x \rightarrow +\infty} \frac{-6 - \frac{40}{x}}{\sqrt{1 - \frac{6}{x} - \frac{40}{x^2}} + 1} $
Listooo, tomamos límite, fijate que hay varios términos que se están yendo a cero. El numerador tiende a $-6$, el denominador tiende a $2$, por lo tanto, el resultado del límite esss...
$ \lim _{x \rightarrow +\infty} \left(\sqrt{x^2 - 6x - 40} - x\right) = -3 $
Reportar problema